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In a development of the ideas of Liapunov [l] on the stsbility of the 

eauilfbrfum shnpe of a rotating liquid. it was shown in fzl that for 

certain conditions the question of stability of steady motion of a solid 

body with a liquid-filled cavity reduces to the investigation of the 

conditions for a mialu~um of the expression 

where V is the potential energy, S is the moment of inertia of the 

system with respect to a certain fixed axis, and k, is a constant. 

For the c8se of equilibrium, in which kg = 0, the question of sts- 

bility reduces to the problem of the minimum potential energy of the 

system [31. This problem was solved in f41; the method of solving the 

problem of minimum V used in that paper is, with certain 8lterations. 

suitable for solution of the problem of minimum II 8s well. 

The solution of the problem of minimum W is given below for a rigid 

body rith 8 simply-connected cavity partially filled rith liquid, in an 

external force field. Two erasples are considered. 

1. We imagine an absolutely rigid body having a simply-connected 
cavity partially filled with a homogeneous incompressible liquid. Let 
us assume that stationary constraints are imposed on the body, allowing 
it to rotate about a certain fixed straight line, which we take to be 

the c-axis of a fixed rectangular system of coordinate axes O&c. Let 
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the position of the rigid body relative to the coordinate system Ocr)c 
be defined by Lagrangean coordinates ql, . . . , q, (n \<6). We assume that 
the coordinate q defines the angle of rotation of the body about the 
c-axis and is cy:lic in the sense that the potential and kinetic 
energies of the system are independent of q,; the potential energy of an 
element of liquid dT has the form pu,(<, ‘1, c)dT, where p is the density 

Let us assume that in the steady-state motion of the rigid body and 
the liquid the coordinates are qi = 0 ( i = 1, . , . , n - 1). We will con- 
sider in the neighborhood of this steady motion the region of vari- 
ables qi 

IQilGH (i = 1 ,- * -, n- 1) (1.1) 

where H > 0 is a sufficiently small constant. Let qi be the coordinates 
of a certain fixed point belonging to the region (1.1). We will find 
what the form of the free surface of the liquid must be in order that 
for given qi the expression W will have an extremum. 

For the solution of this problem we take the first variation of IV for 
fixed qi and equate it to zero 

Here T denotes the volume of the liquid, V,(<, n, 5) is the potentiai 
of the body forces acting on the liquid, S is the moment of inertia of 
the system with respect to the axis 5 for given qi and the sought shape 
of the free surface of the liquid. Variation under the integral sign 
gives 

‘Ihe variations of the coordinates of the liquid particles are related 
within the region T by the continuity equation 

(1.3) 

and on the wetted walls al of the cavity by the condition of no penetra- 
tion 

where 1, m, n are the direction cosines of the outward-directed normal 
to ul. Multiplying equation (1.3) by the undetermined multiplier 
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AbE, ‘1, 5) of Lag-we, integrating over the entire volume T of the 
liquid and adding it to the equation (1.2), we obtain 

Since 

then the equation written above takes the form 

+(F- ~)aS}d~+SA.(raE+rnarl+nas)d~=O (I.51 
0 

where u denotes the boundary of the region T, consisting of the wetted 

walls of the cavity u1 and the free surface of the liquid a,. 

It is known [51 that the undetermined multiplier A(<, q, 5) may be 

interpreted here as the hydrodynamic pressure p(c, q, 5). Since the 

pressure on the free surface of the liquid remains constant, equal to 

the pressure p. in the air space, 
(1.4) is satisfied, then 

while on the surface u1 the condition 

In view of the incompressibility of the liquid the last integral is 

equal to zero. Then the equality (1.5) is possible if and only if the 

following equations are satisfied: 

Hence we find the equation of the free surface of the liquid 

I: (E, q, 5) = g- (E” 4. q’) + cr2 (E, q, 5) = c (1.7) 

giving an extremum of the expression N’ for fixed qi. The constant c is 
determined by the quantity of liquid in a given cavity of the body. 

For steady-state motion, in which qi = 0 (i = 1, . . . . n - l), equa- 

tion (1.7) becomes the equation for the free surface of the liquid in 
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this motion [21 

Fo 6 rlt C) = f o2 (E2 + q2) i- u2 (Et q, 5) = co (1.8) 

Here o is the magnitude of the angular velocity of uniform rotation 

of the entire system as a single rigid body, and k, = Sso, where S, is 

the moment of inertia of the system in the steady-state motion. 

Since the liquid does not exhibit tensile resistance, the forces 

acting on its particles located at the free surface are directed into 

the liquid, and hence in steady motion the liquid must be situated on 

that side of the surface (1.8) where the function F,({, rl, 5) > c,,. We 

denote the simply-connected region occupied by the liquid in this motion 

by D,; for all of its points F, >c,,. 

From the possible positions of the fluid for qi # 0 we choose only 

those where F({, q, 5) > c everywhere within the liquid. This region, 

bounded by the surface (1.7) and the walls o1 of the cavity, we denote 

by D. 

We will now examine the character of the extremum of the expression 

ly for fixed values of qi from the region (1. l), when the fluid occupies 

the region D. In this we will assume that the quantity ca is not the 

extremal of all of the values assumed by the function F, in the neighbor- 
hood of the surface F, = co. The locus of the point of intersection of 

the surface (1.8) with the walls u1 of the cavity describes a certain 

closed curve M, which is the boundary of the free surface of the liquid 

(1.8). 

We imagine a unit vector n,(m) normal to the surface (1.8) at the 

point m of the curve M and directed towards the side F, < c,,, and a 

normal n,(m) to the surface of the walls of the cavity, directed into 

the cavity. We will assume that the angle e(m) formed by these vectors 

varies continuously between constant limits 0 < 8, < e(m) < 8, < TI 

during passage of the point m along the curve M. 

We also consider the following two-parameter family of surfaces 

I.- _ ko? ---- (E2 + q2) -1 C-,(t, v, <) :- co + AC 
:! (So ;- A.)‘)’ (1 .g> 

continuous in AS and AC, which are assumed to be sufficiently small in 

absolute value. We assume that the unit vector n1 normal to the sur- 

faces (1.9) depends continuously upon 6, q, 5, AS, AC in a sufficiently 

small neighborhood of the curve M, and that the vector n2 depends con- 

tinuously upon the point of the surface of the cavity wall in this same 

neighborhood. 
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Under these assumptions it is not difficult to prove the validity of 
the following assertion [4] : 

For my sufficiently small qi, AC, AS, there exists a simply-connected 
region D’, bounded by the surface of the walls of the cavity, displaced 
into the position qi, and the surface (1.9) ; this region does not con- 
tain the points F,, < c,, + AC and transforms continuously into the region 
D, for 

On the basis of what has been said it is clear that under these 

assunptions the constant H defining the region (1.1) may always be chosen 

so small that for any qi from the region (1.1) the surface (1.7) belongs 
to the family (1.9); in this As and AC, determined by the condition of 

conservation of volume of the liquid, will be continuous functions of 

the coordinates qi(i = 1, . . . . n - l), vanishing for qi = O(i = 1, . . . . 

n - 1), while the distance I of surface (1.7) from surface (1.8) will 

not exceed H within the cavity. 

For certain fixed qi in region (1.1) we choose a region D, bounded by 

the walls of the cavity in the displaced position and the surface (1.7), 

where the constant c = co + AC, is defined. Let y < ca t AC be a certain 

constant such that the region n’(y) bounded by the surface of the walls 

of the cavity and the surface F = y, which transforms continuously into 

the region D for y - ca + AC, does not contain the points F < y. We con- 

sider any possible position of the liquid completely filling the region 
D” C D’(y) and find the change of the expression It’ for fixed qi as the 

liquid passes from the region D into the region D’: We have 

This difference is positive if the region D” differs from the region 

D. Actually, the difference of the first two terms represents the change 

of potential energy of the liquid in the force field 

F = $$ (E2 + q2) + u, 
for the passage of a certain portion of liquid from the region F >co + 
AC into the region where F < co + AC; in this the potential energy of 

the liquid clearly increases. ‘Ihe third term is positive. ‘lhus the loca- 
tion of the liquid in the region D corresponds to the minim change in 

the potential energy of the liquid relative to all of its possible posi- 

tions in the region D’(y). Consequently, the letuna that follows is true. 
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lemma. For fixed values of qi( i = 1, . . . , n - 1) the expression W has 

a minimum if the free surface of the liquid is defined by equation (1.7). 

As a consequence of this lelrma we note that for the case of equi- 

librium of a solid body containing a liquid, where k, = 0, the expres- 

sion ‘:V = V for fixed qi has a minimum [4] if the free surface of the 
liquid is represented by the equation 

u, (El q, I) = const 

For any given set of values qi from the region (l.l), the solid body 

and the liquid in its cavity may be put into correspondence with a 

certain solid body, which we will call the transform, consisting of the 

given solid body and the solidified liquid with the free surface (1.7). 

Then, according to the lemna, the expression W for the transformed 

body has a minimum compared to all possible free surfaces of the liquid 

which are sufficiently close to (1.7). 

7heorem. In order that the expression W have a minimum in the steady- 

state motion of the solid body with liquid in its cavity, it is neces- 

sary and sufficient that N’ have a minimum for qi = 0 for the transformed 

solid body in the region (1.1). 

Proof. For all possible transformed solid bodies in the region (l.l), 

let the expression 

then W - 

Yhave a minimum W0 for qi = 0 (i = 1, . . . . n - 1); 

II’, > 0. For a solid body with liquid, according to the learna, 

the difference W - W, will be a still greater positive number, by which 

sufficiency is proved. Ke now prove necessity. We suppose that the ex- 

pression IV for a rigid body with liquid has a minimum for qi = 0 (i = 1, 

. . . . n - 1). This means [2] that for all possible sets of values of the 

coordinates qi (i = 1, . . . . n - l), distances 1 and displacements A such 

that (qil <I/, 1 <H, A >~2, all the values assumed by the difference 

W - W, will remain positive and will vanish only for qi = 0 (i = 1, . . . , 
n - l), 1 = 0, A = 0. Consequently, this difference will also be positive 

for values of the distance I < H, characterizing the transition from the 

form of the liquid in the undisturbed motion to the form determined by 

equation (1.7) for arbitrary qi from the region (1.1). Dut this also 

means that the expression W has a minimum It’,, for the transformed body 

for q, = 0. ‘lhe theorem is proved. 

In this manner, the problem of the minimum of the expression W is re- 

duced to the problem of the minimum of a function of a finite number of 

variables, which is the expression W for a solid body with liquid bounded 

by the walls u1 of the cavity and the free surface (1.7). 

2. Ke will find the change in the quantity W for the transformed 
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solid body in passing from the position corresponding to the steady- 

state motion of the system for qi = 0 to a perturbed position in the 

region (1.1). Ih is transition may he thought of as being carried out in 
two stages: (I) a displacement into the perturbed position of the whole 

system as a single solid body, and (2) a deformation of the shape of the 
liquid through the imposition on its free surface of a layer -rl, the 

volume of which equals zero, into a shape with the free surface (1.7). 

In this the increment in the value of W is represented in the form 

[II 

AW = AIW + A,W (2.1) 

Here A, is the increment for the displacement of the whole system as 

a rigid body into the perturbed position, while A2 is the increment for 

the subsequent deformation of the surface of the liquid into the surface 

(1.7). Similarly 

AS = A,.!? -/- AzS 

With an accuracy to the second order in qi we have 

(2.2) 
AN = - P \ [; uP (Ea + qe) + U, (E, ‘1, t)]d~ + $ I(W)’ + 2A,S&Sl+ -- 

71 

where the index 0 denotes that the corresponding quantity is calculated 

for the undisturbed position of the system. 

For the calculation of A,W it is convenient to introduce a moving 

system of coordinate axes xyz, rigidly attached to the solid body, the 

z-axis of which we let coincide with the c-axis in the undisturbed 

position of the system. 

We denote the integrand in the expression for A,W, expressed as a 

function of x, y, z, by @(x, y, z, qi). ‘Ihe equation of the free surface 

(1.8) of the solidified liquid in the variables x, y, z has the form 

@ (z, y, 2, 0) = $0” pa + y*) + u, (2, y, 2) = cg (2.3) 

We assume that equation (2.3) may be solved uniquely for one of the 

variables x, y, z; for the sake of definiteness let it be the variable 

For this it is sufficient that the continuous derivative (a@//az), 

kn~~s not vanish at a single point of the surface (2.3). This requirement 

is nonessential and is introduced only for simplification. We denote by 

Q the region of the xy plane bounded by the projection of the closed 
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curve M on this plane, where hf is the locus of the point of intersection 
of the surface (2.3) with the walls u1 of the cavity. The surface (1.7) 
in the moving axes takes the form 

(2.4) 

where the constant c = ca t &c is determined from the condition of 
equality of the volumes of the liquid in the cavity with the free sur- 
faces (2.3) and (2.4). ‘The latter condition is equivalent to the 
tion that the volume of the deforming layer -rl be equal to zero 

s dz = 0 

In the first approxi~tion this equation is equivalent to the 
ing 

condi - 

follow- 

where tO and z1 denote the corresponding values of the variable z for 
points on the surfaces (2.3) and (2.4). Replacing the variable z by the 
new variable [41 CI = @(x, y, z, qi) - c,,, the latter equation to the 
same degree of approximation takes the form 

ssi ) ‘& @ -p,,)dxdy = 0 

Q 
(2.5) 

where with an accuracy to the first order in qi 

Ilo = 0 (2, y, 20, qJ -co = Y(E) 

i=l 
a$ oqi+ =** 

~1 = @ (z, y, zI, q$ - co= AC + $ (9 + y”) AS $- . . . 
(2-Q 

since in the first approximation the functions 9(x, y, Z, 4;) and 
@,(x, y, Z, pi) differ only by the term (02/SO)(x2 + y2)AS. 

Substituting the values of v’. and v”l into (2.51, we obtain a linear 
equation relating AC and A,& A second similar equation is obtained by 
a calculation in the first approximation of the quantity 

Ad = P \ (E2 + 71’) dr = P l\(g), (x2 + ya) (cl1 - po) dx dy . 
+I Q 

(2.7) 

The equations (2.5) and (2.71, when (2.6) is taken into account, take 
the form 
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SS(~)o[ AC + $ (x2 -+ y”) AS - i’( E)uQ~] d:r dy = 0 

i-l 

~\[(g)~(se + ~"1 [AC + -$ (x2 + y2)AS- z(z)‘ pi]'s'Y = A*' 

10 

and as may be seen without difficulty, they allow the unique determina- 

tion of AC and A,S as linear functions of qi. We note that if 

then AC = 0, 1I,S = 0 in the first approximation. 

We denote the integral in the expression for A,W by J. \r/e have 

J=Ppw,Y,wp~ =~I,~~(~)o(P12-~02)~~dy (2.9) 
Tl Q 

In this manner we obtain (2.10) 

A&I- = - + p 
SS( 1 

j$ o (pi2 - p,$ dr dy + g [(A&‘)2 $- 2AiS A$] +. . . 

c! 

According to the formula (2.1) the quantity AI is a quadratic form 

in the variables ql, . . . , q,+. The conditions for positive-definiteness 
of the latter are the conditions of minimum W for a solid body with a 

liquid-filled cavity in a force field with a potential V. 

3. Example. Stability of rotation of a heavy solid body having a 
cavity containing a heavy liquid [2], We consider a heavy solid body 

with a single fixed point and having a partially liquid-filled cavity in 

a uniform force field. ‘Ihe c-axis of the fixed coordinate system qn{ 

with origin at the fixed point 0 of the body is directed vertically up- 

wards, while the moving axes x, y, z coincide with the principal axes of 

inertia of the body at the point 0. 

We denote the cosines of the angles formed by the -axis with the 

moving axes x, y, z by yl, ypr y3, where obviously y1 f + y*2 t ya2 = 1. 

Let the unperturbed motion be a uniform rotation of the whole system 

as a single rigid body with angular velocity o about the z-axis, co- 

incident with the g-axis, and in this rotation let the z-axis be a 

principal central axis of inertia of the system. lhe equation of the 

free surface of the liquid (2.3) takes the form 

CD (2, y, 2, 0) = -+I? (9 + y2) -- gz = c (3.1) 
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where g is the gravitational acceleration. In the unperturbed motion 

y1 = yz = 0, y3 = 1. In the perturbed position of the system its poten- 

tial energy and morllent of inertial relative to the <-axis are, respec- 

tively 

v = Jfg (XT, -;- l-7, + Zr3) (3.2) 

S = AT,* -I- By,* $ Cr3* - 20~,-(, - 2Ersy, - 2Fy17, 

Here ;\l is the mass, X, Y, Z are the coordinates of the center of 

gravity, and A, R, C, D, E, F are the moments of inertia and products of 

inertia of the system. 

The function @(n, y, z, qi) in the present case has the form 

V:e assume that the region Q is a ring bounded by circles of radii R, 

and R,(R, > R2). For this, as may be easily seen, the equalities (2.8) 

hold and AC = 0, A,.9 = 0. Then 

In this way, according to formula (2.1) we find 

AM’ = + {[(Co - A,) o”-kfMgZ,-a]~,*+ 

+[(Co-BB,)~*-~gZ,-~]~,*}~-... (3.4) 

‘Ihe condition of minimum W in this case reduces to the single inequal- 
ity 

(C, - ‘40) a* - JlgZ, - n > 0 (3.5) 

if it is assumed, without loss of generality, that A,>R,. 

If the liquid were weightless, then its free surface would be the 
surface of the circular cylinder 

(3.6) 

In place of (3.3) in this case we have 
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@(r, 0, z , ri) = + a2 [ r2 - r2 ( c0s2 OrI -1 sin2 9yz2) + (3.7) 

+ z2 (y12 + r22) - 2r2 sin 9 cos ByIT - 2rz (cos fly, + sin 0~~) l/r1 - y12 --yz2] 

and 

a@ 

H ar 0 
= 02b, p. = - 02bz (cos By, + sin 0~~) L (3.8) 

We assume that the cylinder (3.6) intersects the surface crl of the 
cavity in circles with centers on the z-axis at the points with coordi- 

nates z = h + d and z = h - d. The condition of conservation of volume 

of the liquid in the first approximation takes the form 

Furthermore, in the first approximation we find 

A,S =-: p \ r2dt = ‘g b2p (AC + g b2A1S) 
.I 
T1 

From the two last equations it follows that in the first approxima- 
tion 

ApS = 0, AC = 0 

Finally, we find 

= oQb2 ‘w (r12 rz2) 

‘Ihe of minimum W in this case reduces to the single inequal- 

ity [21. 

( 
Co - A0 - 2Jrpb2d ‘9) o2 - JlgZ, > 0 for A, > B, (3.9) 

4. Example. The stability of steady rotation of a whirling mater duct. 

(All of the notation of the example is introduced independently of the 

foregoing). We imagine a heavy rigid body able to rotate about the 

vertical axis OZ. with a cavity having the shape of a right circular 

cylinder rith radius R and height H. Let the cavity be partially filled 

with a heavy incompressible liquid of density p with volume V = mR*H. 

At a certain point A of the solid body let there be applied a restoring 

force F proportional to the distance of the point A from the z-axis and 
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intersecting the z-axis at a right angle at the point P. We also assume 
that ideal constraints are applied which keep the base of the cylinder 
(cavity) horizontal and maintain constant the distance OA = 1. Let B be 
the center of gravity of the solid body with its cavity completely 
filled with liquid, II the mass of this system, and d* the central radius 
of gyration about an axis parallel to the z-axis. Projecting A and B on 
the plane containing the fixed axes x and y, we obtain the points (I and 
b. Let v be the angle between the x-axis and the direction ba, 9 the 
angle between ba and Ob. and let Ob = r’. Then, since the distance ba is 

constant and equal to e, we obtain 

(oa)2 = +t f e2 + Erie cos f+‘, pp)” = 1” - (0~)s = 12 - r’? - 2r'e cos c-p - ea. 

The varied potential energy of the system may be put into the form 

I:‘! 

TV = 
nt (d” _;._ r’?) - J, fmg (OP) + pLm ‘20”)* - Pg \ zdx 

b 
(Jp =$r.‘d~) 

(9 =x2 + yz) 

where pm characterizes the elastic force F, while D is the region free 
of liquid. 

For steady rotation with angular velocity o about the z-axis the re- 
gion D is bounded by the paraboloid 

2 - pr2 = -al, 
02 

P=,, 

where GI* satisfies the equation 

d k” 
- = (m(d2 + ~‘2) _ Jp)2 2 

(4.11 

(4.2) 

We give the system a possible displacement 6r = <, 69 = ?, for which 
the paraboloid (4.1) is displaced as a rigid body along the z-axis by an 
amount 6(OP). Its equation acquires the form 

2 - Jr2 = - c(~ + 6 (OP) (4.3) 

and it bounds the region D’. 

In this displacement the quantity JP(D) = Jp(D’) does not change, 
while the gravity forces do work nlg6(OP), where a1 is the actual mass 
of the system. Equating to zero the first variation of the potential 
energy 6W for this displacement, we obtain 

or 

6W = nzlgti (OP) - o%i-vo’*E, + pm (0~) =: 0 

pro’+ Ye cos ‘PO - Vg 
r0’+ e cos cpo 

v l2 _ rg12_ e2 _ 2ro,e cos ‘Fo - o+o)= 0 
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ro’c sin cp 
[ -p+ 1/l”+ 

vg 
rO’s - ea- 2r”‘e cos ‘po 1 ZZ 0 / __ ml 

\‘- m ) 

The second equation allows the two solutions q, = 0. qj, = ‘II. For the 
first solution the point b is closer than the point a to the z-axis by 
the amount C, while for the second it is farther away by e. The solutions 
for ro’, obtained by setting the term in the brackets equal to zero, are 
equal to 1 and hence we discard them. The solution of the first equation, 
which goes to zero with e, we take in the form of a series r,, = ale + 

aze z + . . . . 
Assuming that q. = 0. s. we have 

pro’* pe - vg 
r0’ f e 

--jq--_ ioT_ e2 -+ 2ro’; - a2ro’ =o 

Restricting ourselves to the first term, we obtain 

ro’= f 
vgll-p 

p _ vg i 1 _ 02- e = w 

The solution q+) = 0 proves to be possible, if vg/l < p < a2 t vg/l. 
while q.+, = w is possible if u < vg/l, or if u > o2 t vgl. We calculate 
now the second variation of the function R for the displacement of the 
system mentioned above 

C ??!*r’o* (p j- 
A11V == 

502) -t (ma@ - Jp) (p - co?) 
~ - 

m (dz _t ro’a) - J, 

lamlg 

(P- rOta - ea- 2ro’e cos cpo)% 1 
Ea-_ 

- ro’e co9 9.3 
[ 

mP-- 
w 

)ila-r;~_ e= - 2ro'e coscp0 3 q= 
(4.4) 

The coefficient for q2 is positive only for 9o = n. We calculate now 
the variation in the function I for the transformation of the paraboloid 
(4.3) into the paraboloid 

( ka 
,- - P’r? = - aI-+ 8 (OP) - AZI J’R = [,,L (Jz f (ro’_t E)‘) - J,(O”)]Z ) (4.5’ 

Here D” is the region bounded by the paraboloid (4.5). 

In the calculation mentioned above we deviate from the scheme de- 

veloped In the article for convenience. since the comparison will be 

made not with the nfroaen” surface z - pr 
2 - 

- - al, but with the surface 
displaced downwards by 6(OP). This, however, is of no real importance 
since the variation of the function II in the passage to the surface (4.3) 
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was taken into account in formula (4.4), while all of the rest of the 

reasoning is unchanged when the surface of comparison is changed. 

31 

From the condition of conservation of volume we have 

(4.6) 

By definition 

J, == p 
c 

r2dz = pnHt (1 - cj2 II p5CfP -- 

riff 
2 24p2 (4.7) 

A J, = - &J = - !T?!?_ 
12i33 4, Ap = - (m (d3+:&J3 

[Zwwo'~ - AJ,] (4.8) 

Calculating the variation A,#‘, we find 

A2W=-+ 
ss 

(32’ 
v”dx’dy’ a~Q- _ JG (AJ,)2 

0 

v = pg [r2 - R2 (1 -E)] Ap, x=rcos*, y = r sin 9 

where x’y’z* are moving axes. From (4.7) and (4.8) we obtain 
. 

if 
pnH3 

I 
AD= - 

4pnro 

PP” im (d2 + r0'~1- J, 1 m (fP + ro*) J, 4 

Integrating and using (4.8), we obtain 

Azw =- 

2p02HWr~‘2 

t3/~~*/g2}[m(d z-/-r’2)-Jp] + pnH3] [m (tP+r,,‘2)- JP] k2 

Finally, a sufficient condition for stability of the regime 

tpo=x for ~m>mo2+mIg/t 

takes the form 

m2rd2 (P + 302) + (md2 - JP) (P - 02) &nlg 

m (d2 + r~‘~) -J, 
- 

(la -r0’2 - e2 + 2rg’ep - 

-- 2p02H3m2ro’z 
[S/2 (o*jg2 Irn (d2 + ~‘3 - JP] + pnN*] [m (d2 + rG2) - JP] > * 

This problem was considered in E61 under the assumption o = const. 
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